
$\mathrm{R}_{1}=\mathrm{V}_{1}($ max. when $\mathrm{a}<\mathrm{b})=\frac{\mathrm{Pb}^{2}}{\mathrm{~L}^{3}}(3 \mathrm{a}+\mathrm{b})$
$\mathrm{R}_{2}=\mathrm{V}_{2}($ max. when $\mathrm{a}>\mathrm{b})=\frac{\mathrm{Pa}^{2}}{\mathrm{~L}^{3}}(\mathrm{a}+3 \mathrm{~b})$
$M_{1}($ max. when $\mathrm{a}<\mathrm{b})=\frac{\mathrm{Pab}^{2}}{\mathrm{~L}^{2}}$
$\mathrm{M}_{2}($ max. when $\mathrm{a}>\mathrm{b})=\frac{\mathrm{Pa}^{2} \mathrm{~b}}{\mathrm{~L}^{2}}$
$\mathrm{M}_{\mathrm{a}}($ at point of load $)=\frac{2 \mathrm{~Pa}^{2} \mathrm{~b}^{2}}{\mathrm{~L}^{3}}$
$M_{x}($ when $\mathrm{x}<\mathrm{a})=\mathrm{R}_{1} \mathrm{x}-\frac{\mathrm{Pab}^{2}}{\mathrm{~L}^{2}}$
$\Delta_{\text {max }}\left(\right.$ when $\mathrm{a}>\mathrm{b}$ at $\left.\mathrm{x}=\frac{2 \mathrm{aL}}{3 \mathrm{a}+\mathrm{b}}\right)=\frac{2 \mathrm{~Pa}^{3} \mathrm{~b}^{2}}{3 \mathrm{EI}(3 \mathrm{a}+\mathrm{b})^{2}}$
$\Delta_{\mathrm{a}}($ at point of load $)=\frac{\mathrm{Pa}^{3} \mathrm{~b}^{3}}{3 \mathrm{EIL}^{3}}$
$\Delta_{\mathrm{x}}($ when $\mathrm{x}<\mathrm{a})=\frac{\mathrm{Pb}^{2} \mathrm{x}^{2}}{6 \mathrm{EIL}^{3}}(3 \mathrm{aL}-3 \mathrm{ax}-\mathrm{bx})$

Figure A. 12 - Beam Fixed at Both Ends - Concentrated Load at Any Point

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{V}_{1}=\frac{\mathrm{w}}{2 \mathrm{~L}}\left(\mathrm{~L}^{2}-\mathrm{a}^{2}\right) \\
& \mathrm{R}_{2}=\mathrm{V}_{2}+\mathrm{V}_{3}=\frac{\mathrm{w}}{2 \mathrm{~L}}(\mathrm{~L}+\mathrm{a})^{2} \\
& \mathrm{~V}_{2}=\mathrm{wa} \\
& \mathrm{~V}_{3}=\frac{\mathrm{w}}{2 \mathrm{~L}}\left(\mathrm{~L}^{2}+\mathrm{a}^{2}\right)
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{x}} \text { (between supports) }=\mathrm{R}_{1}-\mathrm{wx}
$$

$$
V_{x 1}(\text { for overhang })=w\left(a-x_{1}\right)
$$

$$
M_{1}\left(a t x=\frac{L}{2}\left[1-\frac{a^{2}}{L^{2}}\right]\right)=\frac{w}{8 L^{2}}(L+a)^{2}(L-a)^{2}
$$

$$
\mathrm{M}_{2}\left(\text { at } \mathrm{R}_{2}\right)=\frac{\mathrm{wa}^{2}}{2}
$$

$$
\mathrm{M}_{\mathrm{x}}(\text { between supports })=\frac{\mathrm{wx}}{2 \mathrm{~L}}\left(\mathrm{~L}^{2}-\mathrm{a}^{2}-\mathrm{xL}\right)
$$

$$
\mathrm{M}_{\mathrm{xl}}(\text { for overhang })=\frac{\mathrm{w}}{2}\left(\mathrm{a}-\mathrm{x}_{1}\right)^{2}
$$

$$
\Delta_{\mathrm{x}}(\text { between supports })=\frac{24 \mathrm{EIL}}{\mathrm{wx}}\left(\mathrm{~L}^{4}-2 \mathrm{~L}^{2} \mathrm{x}^{2}+\mathrm{Lx}^{3}-2 \mathrm{a}^{2} \mathrm{~L}^{2}+2 \mathrm{a}^{2} \mathrm{x}^{2}\right)
$$

$$
\Delta_{\mathrm{x} 1}(\text { for overhang })=\frac{\mathrm{wx}}{24 \mathrm{EI}}\left(4 \mathrm{a}^{2} \mathrm{~L}-\mathrm{L}^{3}+6 \mathrm{a}^{2} \mathrm{x}_{1}-4 \mathrm{ax}_{1}^{2}+\mathrm{x}_{1}^{3}\right)
$$

Figure A. 13 - Beam Overhanging One Support - Uniformly Distributed Load

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{V}_{1}=\frac{\mathrm{Pa}}{\mathrm{~L}} \\
& \mathrm{R}_{2}=\mathrm{V}_{1}+\mathrm{V}_{2}=\frac{\mathrm{P}}{\mathrm{~L}}(\mathrm{~L}+\mathrm{a}) \\
& \mathrm{V}_{2}=\mathrm{P} \\
& \mathrm{M}_{\max }\left(\text { at } \mathrm{R}_{2}\right)=\mathrm{Pa}
\end{aligned}
$$

$$
M_{x}(\text { between supports })=\frac{P a x}{L}
$$

$$
\mathrm{M}_{\mathrm{x} 1}(\text { for overhang })=\mathrm{P}\left(\mathrm{a}-\mathrm{x}_{1}\right)
$$

$$
\Delta_{\max }\left(\text { between supports at } \mathrm{x}=\frac{\mathrm{L}}{\sqrt{3}}\right)=\frac{\mathrm{PaL}^{2}}{9 \sqrt{3} \mathrm{EI}}
$$

$$
\Delta_{\max }\left(\text { for overhang at } \mathrm{x}_{1}=\mathrm{a}\right)=\frac{\mathrm{Pa}^{2}}{3 \mathrm{EI}}(\mathrm{~L}+\mathrm{a})
$$

$$
\Delta_{\mathrm{x}}(\text { between supports })=\frac{\operatorname{Pax}}{6 \mathrm{EIL}}\left(\mathrm{~L}^{2}-\mathrm{x}^{3}\right)
$$

$$
\Delta_{\mathrm{x}}(\text { for overhang })=\frac{\mathrm{Px}_{1}}{6 \mathrm{EI}}\left(2 \mathrm{aL}+3 \mathrm{ax}_{1}-\mathrm{x}_{1}{ }^{2}\right)
$$

Figure A. 14 - Beam Overhanging One Support - Concentrated Load at End of Overhang

Figure A.15-Continuous Beam - Two Equal Spans and Uniformly Distributed Load

